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Why do we need crowdsourcing?

Acquiring label data from domain 
experts or well-trained workers is usually 

expensive and time-consuming.
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Crowdsourcing Task

Obtaining label data from 
crowd workers is usually 

cheap and  easy*. However, 
some of the data can be 

unreliable.
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* Amazon Mechanical Turk (AMT), CrowdFlower, and Guru etc.…
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Crowdsourcing Task

vs.

Infer the true labels from a large sum of 
noisy labels.
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Label Aggregation Benchmark Algorithm

MV Majority voting

DS-EM Dawid-Skene model + Expectation Maximization

DS-MF DS-Mean Field

MMCE(C) Categorical Minimax Conditional Entropy

MMCE(O) Ordinal Minimax Conditional Entropy
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Tensor Completion Algorithm

LRTC （Liu et. al., 2013）

TenALS (Jain and Oh, 2014)

Tucker (Tucker, 1966; De Lathauwer et al., 2000; Kim & Choi, 2007)
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MiSC Strategy
Label Aggregation Benchmark Algorithms

MV 
DS-EM
DS-MF

MMCE(C)

MMCE(O)

Tensor Completion Algorithms

LRTC

TenALS

Tucker

A versatile complete-aggregate two-step looping structure.
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From Label matrix to Binary 3-way Tensor

𝐴𝐴 = 1 0 4
1 3 0

𝒜𝒜 1, ∶, ∶ =
1 0 0 0
0 0 0 0
0 0 0 1

Label matrix Binary label tensor
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Worker

Item

Worker

Item
Class

𝐴𝐴 2,2 = 3: The 2nd worker
thinks the 2nd item belongs 
to class 3.

𝒜𝒜 2, ∶, ∶ =
1 0 0 0
0 0 1 0
0 0 0 0

Class 3

2nd item
2nd worker

𝒜𝒜 2,2,3 = 1



From A Label Vector to A Slice

𝑠𝑠 = (1, 3, 2)

Guess of ground-truth

𝒮𝒮 =
1 0 0 0
0 0 1 0
0 1 0 0
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A slice (matrix)
Item Item

Class

The 3rd item is inferred 
belonging to class 2. 

Class 2

3rd item



Tucker Decomposition
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Tucker decomposition decomposes a tensor into a set of 
matrices and one small core tensor. (𝑅𝑅1, 𝑅𝑅2, R3) are called
tensor ranks, they affect the performance of approximation. 
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MiSC: Mixed Strategies Crowdsourcing algorithm
Input: label matrix 𝐴𝐴, initial rank 𝑅𝑅0, 

ranks 𝑅𝑅1, 𝑅𝑅2, 𝑅𝑅3

Find 𝑁𝑁𝑐𝑐 by checking the maximum entry of 𝐴𝐴.
Initialize conventional aggregation result 𝓈𝓈 from A.

𝑐𝑐 ≤ N𝑐𝑐?
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MiSC: Mixed Strategies Crowdsourcing algorithm
Input: label matrix 𝐴𝐴, initial rank 𝑅𝑅0, 

ranks 𝑅𝑅1, 𝑅𝑅2, 𝑅𝑅3

Find 𝑁𝑁𝑐𝑐 by checking the maximum entry of 𝐴𝐴.
Initialize conventional aggregation result 𝓈𝓈 from A.

𝑐𝑐 ≤ N𝑐𝑐?

Construct 3-way binary tensor 𝓐𝓐.

YES

𝑐𝑐 = 𝑐𝑐 + 1
NO Stopping criteria   

are met?

Stopping criteria:
1) A prescribed amount 
of sweeps; or
2) the last slice stops 
evolving.
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Input: label matrix 𝐴𝐴, initial rank 𝑅𝑅0, 

ranks 𝑅𝑅1, 𝑅𝑅2, 𝑅𝑅3
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𝑐𝑐 ≤ N𝑐𝑐?

Construct 3-way binary tensor 𝓐𝓐.

YES

𝑐𝑐 = 𝑐𝑐 + 1
NO Stopping criteria   

are met?
NO

Stopping criteria:
1) A prescribed amount 
of sweeps; or
2) the last slice stops 
evolving.

Using HOOI to fill in and augment the label tensor.

17



MiSC: Mixed Strategies Crowdsourcing algorithm
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are met?
YES

NO

Stopping criteria:
1) A prescribed amount 
of sweeps; or
2) the last slice stops 
evolving.

Get the completed label matrix �𝑨𝑨

Using HOOI to fill in and augment the label tensor.
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MiSC: Mixed Strategies Crowdsourcing algorithm
Input: label matrix 𝐴𝐴, initial rank 𝑅𝑅0, 

ranks 𝑅𝑅1, 𝑅𝑅2, 𝑅𝑅3

Find 𝑁𝑁𝑐𝑐 by checking the maximum entry of 𝐴𝐴.
Initialize conventional aggregation result 𝓈𝓈 from A.

𝑐𝑐 ≤ N𝑐𝑐?

Construct 3-way binary tensor 𝓐𝓐.

YES

𝑐𝑐 = 𝑐𝑐 + 1
NO Stopping criteria   

are met?

Inferred true labels

YES

NO

Stopping criteria:
1) A prescribed amount 
of sweeps; or
2) the last slice stops 
evolving.

Get the completed label matrix �𝑨𝑨

Using HOOI to fill in and augment the label tensor.

Steps in computing the true labels with an exemplary Tucker completion case.
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Experiment 1: MiSC vs. State-of-the-arts pure strategies

Our method has the best performance on Web dataset, which has low 
nonzero rate ( #𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

#𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 × #𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤
) and high relative error rate ( #𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

#𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙
).
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Web(3.3/63.4) MV DS-EM DS-MF MMCE(C) MMCE(O)

pure 26.93 16.92 16.10 11.12 10.33
LRTC 26.76 16.55 16.09 11.12 10.33

TenALS 26.93 16.77 15.83 11.12 10.33
Tucker 10.87 5.77 5.73 6.97 5.24



Experiment 1: MiSC vs. State-of-the-arts pure strategies

On other five dataset, MiSC improves the accuracy as well.

21



Experiment 2: MiSC for Sparse and Noisy Annotations

Estimation errors (%) of pure and mixed strategies on highly sparse 
and severely noisy annotations in RTE dataset.

MiSC is remarkably advantageous, 
when the data has high sparsity
and severe noise.
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MiSC has three important advantages:
1) Novel – it is the first work that introduces tensor 

decomposition methods to exploit the structural information in 
the label tensor.

2) Versatile – it is a general framework for crowdsourcing that 
improves existing methods to achieve higher accuracy.

3) Powerful – the proposed MiSC algorithm is especially 
robust to annotation sparsity and noise compared with other 
benchmarking pure label aggregation approaches.

Conclusions
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MiSC: Mixed strategies Crowdsourcing
 poster: 15:00 – 16:00 @ 2073-2074
 arXiv: https://arxiv.org/abs/1905.07394

Follow our
project!
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